IP Core Generator: Multiplier

Features

- Multiplier Serial Parallel
- Multiplier Signed
- Multiplier Signed, Pipeline x 1
- Multiplier Unsigned
- Multiplier Unsigned, Pipeline x 1
- Accessible from the Macro Generator Dialog and HDLPlanner[™] Included in IDS for FPGA Devices and System Designer[™] for AT94K FPSLIC[™] Devices
- Serial Parallel Multiplier Only
 - Variable Width of Input Data
 - Input Representation Selection
 - Clock Inversion Capability
 - Initialization Polarity Selection
- Signed Multiplier Only
 - Variable Width of Input DataA
 - Variable Width of Input DataB
- Signed Multiplier, Pipeline x 1 Only
 - Variable Width of Input DataA
 - Variable Width of Input DataB
 - Initialization Polarity Selection
 - Initialization Selection
- Unsigned Multiplier Only
 - Variable Width of Input DataA
 - Variable Width of Input DataB
 - Output Pins Truncation
- Unsigned Multiplier, Pipeline x 1 Only
 - Variable Width of Input DataA
 - Variable Width of Input DataB
 - Initialization Polarity Selection
 - Initialization Selection

Programmable SLI AT40K AT40KAL AT94K

Application Note

Rev. 2440A-12/01

<u>AIMEL</u>

Multiplier – Serial Parallel

The Serial-parallel Multiplier (SPM) generator can be used to create a signed or unsigned serial by parallel multiplier with serial output. A width n unsigned multiplier is constructed in the FPGA by stringing n Carry-Save Adders. A width n signed multiplier is constructed by stringing n-1 Carry-Save Adders and a two's complement together.

Let X and Y be the n-bit and m-bit number respectively. The parallel input X is multiplied by each bit of serial input with the least significant bit coming first, and each of those partial products is added to the shifted accumulation of the previous product. The serial output is then taken from the output of the least significant bit adder. The output bit has the same weight as the previous serial input bit, and the number of bits in the output is equal to the sum of the number of bits in each of the inputs.

Thus the product⁽¹⁾ is:

- $\{Y_{(m-1)}\} * \{X_{(n-1)} * 2^{(n-1)} + X_{(n-2)} * 2^{(n-2)} + ... + X_{(0)}\}$ $+ \{Y_{(m-2)}\} * \{X_{(n-1)} * 2^{(n-1)} + X_{(n-2)} * 2^{(n-2)} + ... + X_{(0)}\}$ + ... $+ \{Y_{(0)}\} * \{X_{(n-1)} * 2^{(n-1)} + X_{(n-2)} * 2^{(n-2)} + ... + X_{(0)}\}$
- Note: 1. The multiplier uses an asynchronous initialization scheme. After each multiplication operation is complete, the reset pin should be asserted for one clock cycle. This flushes the carry-save registers and is required for correct operation of the multiplier.

Parameters

Parameter	Value	Explanation
Width	Integer > 1	Width of parallel input data
Representation	Signed	Treat Inputs as signed
	Unsigned	Treat inputs as unsigned
Invert Clock	Boolean	Invert the clock input
Initialization Polarity = Low	Boolean	Reset input is active low

Туре	Name	Option	Explanation
In	X[Width - 1:0]	No	Multiplier (parallel input)
In	Y	No	Multiplicand (serial input)
In	R/RN	No	Reset input (active high/low)
Out	PROD	No	Product of x and y (serial output)

Statistics

Device	Name	Speed (MHz)	Delay (ns)	Cells	Size (x * y)
AT40K	msp16	121.8	8.2	32	2 x 16
AT40K	msp8	121.8	8.2	16	2 x 8
AT94K/ AT40KAL	msp16	108.3	9.2	32	2 x 16
AT94K/ AT40KAL	msp8	108.3	9.2	16	2 x 8

Figure 1 shows an example of the msp16 macro options.

Figure 1. Multiplier – Serial Parallel Generator	Figure 1.	Multiplier -	Serial Parallel	Generator
--	-----------	--------------	-----------------	-----------

AT40KAL Macro Gene	erators			
Width 16 Representation © Signed	O Unsigned	Ā	Absolute Value	
Invert clock	Initialization Pola	arity = Low	Adder-Carry Select	
			Comparator Deductor	
			ncrement/Decrement k	iy 1
		Ē	ncrement/Decrement k	y value
		Multi	plier-Serial Parallel	
		Multi	iplier-Signed	
		Mul	tiplier-Unsigned	
Arithmetic	Logic Counters DSP 1/0	Logic	Options	
Macro Name	msp16		Hard Macro	
Pin Map File Name			Generate Sci	rematic
User Library	user40kal.lib	•	Browse	Batch Size
Add to Batch G	enerate Cancel	Help	View Batch	0

Multiplier – Signed

The Signed-multiplier generator can be used to generate the product of two varying width inputs. The function it produces is the following:

Product = DATAA * DATAB

where DATAA and DATAB are treated as two's complement signed numbers.

Parameters

Parameter	Value	Explanation
WidthA	Integer > 2	Width of input DataA
WidthB	Integer > 2	Width of input DataB

Pins

Туре	Name	Option	Explanation
In	DATAA[WidthA - 1:0]	No	Multiplicand
In	DATAB[WidthB - 1:0]	No	Multiplier
Out	PRODUCT[Width - 1:0]	No	DataA * DataB (Width is WidthA + WidthB)

Statistics

Device	Name	Speed (MHz)	Delay (ns)	Cells	Size (x * y)
AT40K	mls16	15.5	64.3	289	17 x 17
AT40K	mls8	30.0	33.4	81	9 x 9
AT94K/ AT40KAL	mls16	22.2	45.1	289	17 x 17
AT94K/ AT40KAL	mls8	40.8	24.5	81	9 x 9

Figure 2 shows an example of the mls16 macro options.

AT40KAL Macro Ge	nerators		_ 🗆
WidthA 16	WidthB 16	Absolute	: Value
		Accumul	ator
		Adder-C	arry Select
		Adder-R	ipple Carry
		Compara	tor
		Deducto	r
		Incremen	nt/Decrement by 1
		Incremen	nt/Decrement by value
		Multiplier	-Serial Parallel
		Multiplier-Sig	ned
		Multiplier-Un	isigned
Arithmetic	neLogic Counters DSP 1/0	Logic D Opt	ions
Macro Name	mls16	V	Hard Macro
Pin Map File Name			Generate Schematic
User Library	user40kal.lib	• E	Prowse Batch Size
Add to Batch	Generate Cancel	Help	iew Batch 0

Figure 2. Multiplier – Signed Generator

Multiplier – Signed, Pipeline x 1

This component can be used to generate the product of two varying width inputs. A single stage of pipelining is used to produce a considerably faster macro than the standard signed multiplier with minimal additional logic.

The function it produces is the following:

Product = DATAA * DATAB

where DATAA and DATAB are treated as two's complement signed numbers.

Parameters

Parameter	Value	Explanation	
WidthA	Integer > 2	Width of input DataA	
WidthB	Integer > 2	Width of input DataB	
Invert Clock	Boolean	Invert the clock input	
Initialization Polarity = Low	Boolean	Reset input is active low	
Initialization	Reset	Provide a reset input for initialization of the pipeline registers	
	None	Pipeline registers are automatically initialized on power-up	

Pins

Туре	Name	Option	Explanation
In	DATAA[WidthA - 1:0]	No	Multiplicand
In	DATAB[WidthB - 1:0]	No	Multiplier
In	CLK/CLKN	No	Clock input (noninverted/inverted)
In	R/RN	Yes	Reset input (active high/low)
Out	PRODUCT[Width - 1:0]	No	DataA * DataB (Width is WidthA + WidthB)

Statistics

Device	Name	Speed (MHz)	Delay (ns)	Cells	Size (x * y)
AT40K	mps16	24.9	40.1	306	17 x 18
AT40K	mps8	44.7	22.4	90	9 x 10
AT94K/ AT40KAL	mps16	33.8	29.6	306	17 x 18
AT94K/ AT40KAL	mps8	68.6	14.6	90	9 x 10

Figure 3 shows an example of the mps16 macro options.

6 IP Core Generator: Multiplier

AT40KAL Macro Gen	erators	
WidthA 16	WidthB 16	
		Accumulator
🔲 Inverticlock	🔽 Initialization Polarity =	= Low Adder-Carry Select
☐ Initialization		Adder-Ripple Carry
 Reset 	O None	Comparator
		Deductor
		Increment/Decrement by 1
		Increment/Decrement by value
		Multiplier-Serial Parallel
		Multiplier-Signed
		Multiplier-Unsigned
		Multiplier-Signed Pipeline X 1
Arithmetic	eLogic Counters DSP VO Logic	
Macro Name	mps16	Hard Macro
		Generate Schematic
Pin Map File Name		
Pin Map File Name User Library	user40kal.lib	Browse Batch

Figure 3. Multiplier – Signed Pipeline x 1 Generator

Multiplier – Unsigned

The Unsigned-multiplier generator can be used to generate the product of two varying width inputs. The function it produces is the following:

Product = DATAA * DATAB

Where DATAA and DATAB are treated as unsigned numbers.

Parameters

Parameter	Value	Explanation
WidthA	Integer > 2	Width of input DataA
WidthB	Integer > 2	Width of input DataB
Truncate Result to n Least Significant Bits	Integer ≥ 0	The number of output pins that have to be included in the layout starting from the LSB. This option saves the layout area by not including the unnecessary output pins. If this value is left at 0, all outputs will be present.

Pins

Туре	Name	Option	Explanation
In	DataA[WidthA - 1:0]	No	Multiplicand
In	DataB[WidthB - 1:0]	No	Multiplier
Out	PRODUCT[Width - 1:0]	No	DataA * DataB (Width is WidthA + WidthB)

Statistics

Device	Name	Speed (MHz)	Delay (ns)	Cells	Size (x * y)
AT40K	mlu16	16.0	62.7	256	16 x 16
AT40K	mlu8	31.5	31.7	64	8 x 8
AT94K/ AT40KAL	mlu16	22.8	43.8	256	16 x 16
AT94K/ AT40KAL	mlu8	42.9	23.3	64	8 x 8

Figure 4 shows an example of the mlu16 macro options.

AT40KAL Macro Generators	
WidthA 16 WidthB 16	-
	Accumulator
	Adder-Carry Select
Truncate result to 0 least significant bits (0 = all	Adder-Ripple Carry
	Comparator
	Deductor
	Increment/Decrement by 1
	Increment/Decrement by value
	Multiplier-Serial Parallel
	Multiplier-Signed
	Multiplier-Unsigned
	Multiplier-Signed Pipeline X 1
Arithmetic CacheLogic Counters DSP 1/0 Logic	Options
Macro Name mlu16	Hard Macro
Pin Map File Name	Generate Schematic
User Library user 40kal.lib	Browse Batch Size
Add to Batch Generate Cancel Help	View Batch 0

Figure 4. Multiplier – Unsigned Generator

Multiplier – Unsigned, Pipeline x 1

This component can be used to generate the product of two varying width inputs. A single stage of pipelining is used to produce a considerably faster macro than the standard unsigned multiplier with minimal additional logic.

The function it produces is the following:

Product = DATAA * DATAB

Where DATAA and DATAB are treated as unsigned numbers.

Parameters

Parameter	Value	Explanation
WidthA	Integer > 2	Width of input DataA
WidthB	Integer > 2	Width of input DataB
Invert Clock	Boolean	Invert the clock input
Initialization Polarity = Low	Boolean	Reset input is active low
Initialization	Reset	Provide a Reset Input for Initialization of the Pipeline Registers
	None	Pipeline Registers are Automatically Initialized on Power-up

Pins

Туре	Name	Option	Explanation
In	DATAA[WidthA - 1:0]	No	Multiplicand
In	DATAB[WidthB - 1:0]	No	Multiplier
In	CLK/CLKN	No	Clock input (noninverted/inverted)
In	R/RN	Yes	Reset input (active high/low)
Out	PRODUCT[Width - 1:0]	No	DataA * DataB (Width is WidthA + WidthB)

Statistics

Device	Name	Speed (MHz)	Delay (ns)	Cells	Size (x * y)
AT40K	mup16	27.3	36.7	272	16 x 17
AT40K	mup8	52.9	18.9	72	8 x 9
AT94K/ AT40KAL	mup16	38.7	25.8	272	16 x 17
AT94K/ AT40KAL	mup8	84.9	11.8	72	8 x 9

Figure 5 shows an example of the mup16 macro options.

¹⁰ IP Core Generator: Multiplier

AT40KAL Macro G	enerators	_ 🗆
WidthA 16	WidthB 16	Adder-Carry Select
□ Invert clock	🔽 Initialization Polarity = Low	Adder-Ripple Carry
	Minimanzation Folarity = Eow	Comparator
Initialization • Reset	O None	Deductor
·S 11636(Increment/Decrement by 1
		Increment/Decrement by value
		Multiplier-Serial Parallel
		Multiplier-Signed
		Multiplier-Unsigned
		Multiplier-Signed Pipeline X 1
		Multiplier-Unsigned Pipeline X 1
Arithmetic	cheLogic Counters DSP 1/0 Logic	Options
Macro Name	mup16	Hard Macro
Die Man Cile Name		Generate Schematic
Pin Map File Name		
User Library	user40kal.lib	Browse Batch

Figure 5. Multiplier – Unsigned Generator

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Microcontrollers Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Atmel Nantes La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards Atmel Rousset Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Atmel Smart Card ICs Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

Atmel Programmable SLI Hotline (408) 436-4119

Atmel Programmable SLI e-mail fpga@atmel.com – fpslic@atmel.com

FAQ Available on web site

© Atmel Corporation 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel[®] is the registered trademark of Atmel. FPSLIC[™], HDLPlanner[™] and System Designer[™] are the trademarks of Atmel.

Other terms and product names may be the trademarks of others.

RF/Automotive Atmel Heilbronn

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Atmel Grenoble Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

